Лазерное сканирование зданий и сооружений: все, что нужно знать заказчику. Обмерные работы здания музея современной истории россии и других объектов исторического наследия с применением лазерного сканирования Лазерное сканирование зданий и сооружений

Развитие геодезической техники привело к появлению технологии 3D лазерного сканирования. На сегодняшний день это один из самых современных и производительных методов измерений.

Наземное лазерное сканирование — бесконтактная технология измерения 3D поверхностей с использованием специальных приборов, лазерных сканеров. По отношению к традиционным оптическим и спутниковым геодезическим методам характеризуется высокой детальностью, скоростью и точностью измерений. 3D лазерное сканирование применяется в архитектуре, промышленности, строительстве дорожной инфраструктуры, геодезии и маркшейдерии, археологии.

Классификация и принцип действия 3D лазерных сканеров

3D лазерный сканер – прибор, который, производя до миллиона измерений в секунду, представляет объекты в виде набора точек с пространственными координатами. Полученный массив данных, называемый облаком точек, может быть впоследствии представлен в трехмерном и двухмерном виде, а также использован для измерений, расчетов, анализа и моделирования.

По принципу действия лазерные сканеры разделяют на импульсные (TOF), фазовые и триангуляционные. Импульсные сканеры рассчитывают расстояние как функцию времени прохождения лазерного луча до измеряемого объекта и обратно. Фазовые оперируют со сдвигом фаз лазерного излучения, в триангуляционных 3D сканерах приемник и излучатель разнесены на определенное расстояние, которое используется для решения треугольника излучатель-объект-приемник.

Основные параметры лазерного сканера – дальность, точность, скорость, угол обзора.

По дальности действия и точности измерений 3D сканеры разделяются на:

  • высокоточные (погрешность меньше миллиметра, дальность от дециметра до 2-3 метров),
  • среднего радиуса действия (погрешность до нескольких миллиметров, дальность до 100 м),
  • дальнего радиуса действия (дальность сотни метров, погрешность от миллиметров до первых сантиметров),
  • маркшейдерские (погрешность доходит до дециметров, дальность более километра).

Последние три класса по способности решать различные типы задач можно отнести к разряду геодезических 3D-сканеров. Именно геодезические сканеры используются для выполнения работ по лазерному сканированию в архитектуре и промышленности.

Скорость действия лазерных сканеров определяется типом измерений. Как правило, наиболее скоростные фазовые, на определенных режимах скорость которых достигает 1 млн измерений в секунду и более, импульсные несколько медленнее, такие приборы оперируют со скоростями в сотни тысяч точек в секунду.

Угол обзора – ещё один немаловажный параметр, определяющий количество данных, собираемых с одной точки стояния, удобство и конечную скорость работы. В настоящее время все геодезические лазерные сканеры имеют горизонтальный угол обзора в 360°, вертикальные углы варьируются от 40-60° до 300°.

Характеристики лазерного сканирования

Хотя первые сканирующие системы появились относительно недавно, технология лазерного сканирования показала свою высокую эффективность и активно вытесняет менее производительные методы измерений.

Преимущества наземного лазерного сканирования:

  • высокая детализация и точность данных;
  • непревзойденная скорость съемки (от 50 000 до 1 000 000 измерений в секунду);
  • безотражательная технология измерений, незаменимая при выполнении работ по лазерному сканированию труднодоступных объектов, а также объектов, где нахождение человека нежелательно (невозможно);
  • высокая степень автоматизации, практически исключающая влияние субъективных факторов на результат лазерного сканирования;
  • совместимость полученных данных с форматами программ по 2D и 3D проектированию ведущих мировых производителей (Autodesk , Bentley , AVEVA , Intergraph и др.);
  • изначальная «трехмерность» получаемых данных;
  • низкая доля полевого этапа в общих трудозатратах.

Применение 3D лазерного сканирования выгодно по нескольким причинам:

  • проектирование с использованием трехмерных данных геодезических изысканий не только упрощает сам процесс проектирования, но главным образом повышает качество проекта, что минимизирует последующие расходы на этапе строительства,
  • все измерения проводятся крайне быстрым и точным методом, исключающим человеческий фактор, степень достоверности информации повышается в разы, уменьшается вероятность ошибки,
  • все измерения проводятся безотражательным способом, дистанционно, что увеличивает безопасность работы; например, нет необходимости перекрывать автостраду для съемки поперечных сечений, возводить строительные леса для измерения фасада,
  • технология лазерного сканирования интегрируется с большинством САПР (Autodesk AutoCAD , Revit , Bentley Microstation), а также с «тяжелыми» средствами проектирования, такими как AVEVA PDMS , E3D , Intergraph SmartPlant , Smart3D, PDS.
  • результат изысканий получается в различных видах, от выходного формата зависит цена лазерного сканирования и сроки работ:
    • трехмерное облако точек (определенные САПР работают уже с этими данными),
    • трехмерная модель (геометрическая, интеллектуальная),
    • стандартные двумерные чертежи,
    • трехмерная поверхность (TIN, NURBS).

Процесс лазерного сканирования состоит из трех основных этапов:

  • рекогносцировка на местности,
  • полевые работы,
  • камеральные работы, обработка данных

Применение лазерного сканирования

Работы по лазерному сканированию в России на коммерческой основе выполняются с десяток лет. Несмотря на то, что технология достаточно универсальна, за это время определился круг основных применений.

Наземное лазерное сканирование в геодезии, маркшейдерии применяется для съемки топографических планов крупного масштаба, съемки ЦМР. Наибольшая эффективность достигается при лазерном сканировании карьеров, открытых выработок, шахт, штолен, тоннелей. Скорость метода позволяет оперативно получать данные о ходе земляных работ, рассчитывать объемы вынутой породы, осуществлять геодезический контроль хода строительства, следить за устойчивостью бортов карьера, мониторить оползневые процессы. Подробнее см. в статье

Современные задачи, возникающие при проектировании, строительстве, эксплуатации зданий и сооружений требуют представления данных в трёхмерном пространстве, с высокой точностью и полнотой описывающих взаимное расположение частей зданий, сооружений, ситуацию и рельеф. Использование традиционных методов и инструментов (тахеометров, ГНСС-систем) позволяет решать рядовые задачи. Однако всё чаще возникают запросы, требующие полноценного 3х мерного моделирования. К таким сферам относится сопровождение информационного моделирования зданий и сооружений - BIM, фасадные съёмки, цифровые чертежи цехов, заводов. С появлением и развитием технологии лазерного сканирования задача построения 3D цифровых моделей значительно упростилась.

Наземное лазерное сканирование

Лазерное сканирование на сегодняшний момент делится на наземное (НЛС), мобильное (МЛС или мобильное картографирование) и воздушное (ВЛС). Предметом настоящей статьи является наземное лазерное сканирование, которое считается самым быстрым и высокопроизводительным средством получения точной и наиболее полной информации о пространственном объекте сложной формы: зданиях, промышленных сооружениях и площадках, памятниках архитектуры, смонтированном технологическом оборудовании. Суть технологии сканирования заключается в определении пространственных координат объекта при помощи лазерного сканера. Процесс реализуется посредством измерения углов и расстояний до всех определяемых точек с помощью измерений лазерным лучом до отражающих поверхностей с нескольких точек сканирования с перестановкой прибора. Измерения производятся с очень высокой скоростью - наиболее современные приборы производят измерения со скоростью от одного миллиона точек в секунду.

Лазерный сканер Trimble TX8 позволяет выполнять измерения с миллиметровой точностью и скоростью до 1 млн точек в секунду

Управление работой лазерного сканера осуществляется с помощью ноутбука или планшета с набором программ, или с помощью сенсорной панели управления, встроенной в сканер. Полученные координаты точек из сканера создают так называемое облако точек.


Облако точек, полученное при лазерном сканировании здания

Сканер имеет определенную область обзора. Чаще всего они имеют встроенную цифровую фото-видеокамеру. С помощью камеры можно выделять необходимую область сканирования, либо проводить визуальный контроль качества и полноты собранных данных. Также фотокамера используется для раскрашивания облака точек в естественные цвета.

Работа по сканированию происходит с нескольких точек стояния (так называемых станций сканирования) для получения полной информации о форме объектов, потому что сложный объект зачастую не виден с одной точки наблюдения. На стадии полевых работ необходимо предусмотреть зоны взаимного перекрытия сканов. При этом перед началом сканирования в этих зонах часто размещают специальные мишени - цели. Для объединения сканов, выполненных с различных точек, используют процесс сшивки, который может происходить с использованием координат этих мишеней, либо с использованием машинного зрения непосредственно по облакам точек. Лазерное сканирование предоставляет возможность получить максимум информации о геометрической структуре объекта. Его результатом являются сшитые облака точек и 3D модели с высокой степенью детализации (пространственное разрешение - до нескольких миллиметров).


Трёхмерная модель здания

Наземное лазерное сканирование значительно отличается от других методов сбора пространственной информации. Среди отличий выделим несколько основных:

  • полная реализация принципа дистанционного зондирования, позволяющего собирать информацию об исследуемом объекте, находясь на расстоянии от него;
  • максимальная полнота и подробность получаемой информации;
  • высокая скорость получения информации - съемка на одной точке занимает от 2х до 10 минут (в зависимости от плотности), совокупная скорость полевых и офисных работ в несколько раз выше обычной;
  • стоимость съёмки и моделирования объектов ниже, чем при использовании классических технологий примерно в 3 раза.

Благодаря своей универсальности и высокой степени автоматизации процессов измерений лазерный сканер является инструментом оперативного решения самого широкого круга прикладных инженерных задач.

BIM - информационное моделирование зданий

Наиболее актуальной технологией, в которой применяется лазерное сканирование, является BIM - информационное моделирование зданий.

Технология информационного моделирования является самым передовым решением в строительной отрасли при возведении, эксплуатации и реконструкции зданий и сооружений, предполагающий комплексную обработку в трехмерном представлении всей архитектурно-проектной, конструкторской, технологической, экономической и иной информации о здании, когда здание и все, что имеет к нему отношение, рассматривается как единый объект. Внедрение данной технологии значительно повышает качество проектирования и упрощает работу на всех этапах жизненного цикла объекта.

Лазерное сканирование применяется в BIM при изысканиях на первых этапах проекта, контроле процесса строительства, оценке результата строительства и актуализации BIM модели по фактическим данным.

Рассмотрим подробнее этапы проверки и актуализации BIM-модели по данным наземного лазерного сканирования.

Первым этапом является непосредственно лазерное сканирование. При этом сканирование может выполняться с требуемой плотностью. После завершения сканирования данные необходимо передать в программу обработки данных лазерного сканирования, например, Trimble RealWorks , и выполнить сшивку отдельных сканов в единое облако точек. При правильной организации процесса сканирование сшивка данных выполняется в полностью автоматическом режиме. При необходимости выполняется привязка сшитого облака точек к системе координат объекта. Программное обеспечение Trimble Real Works позволяет отображать данные лазерного сканирования в трехмерном виде в различных заливках (белый цвет, градации серого, реальный цвет, окрас по интенсивности отраженного сигнала, заливка по высоте, заливка по цветовой классификации и т.д.) и при необходимости перемещаться по нему, выполняя измерения.

Результат лазерного сканирования с плотностью 3 см на 10 метров. Облако точек раскрашено по интенсивности отраженного сигнала

Вторым этапом является наложение полученного облака точек на цифровую модель здания для последующего визуального анализа и инспектирования отклонений данных съемки от проекта. Наложение, визуальный анализ и инспектирование можно выполнить как в программе Trimble RealWorks , так и в стороннем программном обеспечении, например Autocad Navisworks. Для этого необходимо выполнить экспорт облака точек в одном из стандартных форматов, например las или rcp.

Поддерживаемые форматы экспорта

Третьим этапом является оценка отклонений, отображение отклонений на различных сечениях, подготовка отчетов.

Графическая оценка ровности пола по данным лазерного сканирования


На окончательном этапе в используемой программе для BIM-проектирования при необходимости можно выполнить актуализацию исходной BIM-модели по фактическим данным.

Как и любая иная технология, лазерное сканирование является отличным решением, ровно настолько, насколько хорошо не только применяемое оборудование и программное обеспечение, но, что важнее, мастерство специалистов, использующих его. Поэтому при выборе решений обращайте внимание не только на технические характеристики оборудование, но и на опыт компании, которая его поставляет.

Компания ПРИН ведет свою историю с 1990 года и предлагает лазерные сканеры различного назначения - НЛС , МЛС , программные продукты для обработки данных лазерного сканирования, а также проводит обучение по работе с приобретаемым оборудованием и пуско-наладку поставляемого оборудования на вашем объекте.

25 /01
2019

TBC 5.0 Стоит ли переходить? 10 причин «За»!

В последнее время мы стали получать достаточно много обращений от пользователей, которые планируют перейти на последнюю версию Trimble Business Center 5.0, но перед этим хотели бы понять, действительно ли стоит обновляться до новой версии или лучше следовать поговорке «Старый конь борозды не портит» и остаться на привычной устаревшей версии.

Лазерное сканирование представляет собой передовую бесконтактную технологию трёхмерного измерения объектов и поверхностей. По сравнению с традиционными оптическим и спутниковым геодезическими методами технология лазерного сканирования характеризуется феноменальной детальностью, невероятной скоростью, высокой точностью измерений. Данная технология является поистине революционной в сфере инженерных изысканий, поскольку именно его появление предопределило мощный качественный рывок всей отрасли. Сегодня лазерное сканирование широко применяется в архитектуре, промышленности и энергетике, геодезии и маркшейдерии, на объектах транспортной инфраструктуры, в гражданском и промышленном строительстве, добывающей отрасли, археологии, востребована она также и во многих других отраслях производства и народного хозяйства.

Что такое трёхмерное лазерное сканирование?

Что необходимо сделать для построения точной трёхмерной модели здания или чертежа цеха? Безусловно, сначала провести измерения и получить координаты всех объектов (пространственные x,y,z или x,y на плоскости), а затем уже представить их в нужном графическом виде. Именно измерения координат объекта, иначе говоря, съёмка, составляют наиболее трудоёмкую и затратную часть всей работы. Как правило, геодезисты или другие специалисты, проводящие измерения, используют современное оборудование, в первую очередь электронные тахеометры, которые позволяют получать координаты точек с высокой точностью (до нескольких миллиметров).

Принцип работы электронного тахеометра основан на отражении узконаправленного лазерного пучка от отражающей цели и измерении расстояния до неё. Отражателем в общем случае служит специальная призма, которая крепится на поверхности объекта. Определение двух углов (вертикального и горизонтального) и расстояния даёт возможность вычислить трёхмерные пространственные координаты точки отражения. Скорость измерения тахеометра невысока (не более 2 измерений в секунду). Данный метод эффективен при съёмке разреженной, малозагруженной объектами площади, однако даже и в этом случае сложности, с которыми приходится сталкиваться при креплении отражающих призм (на большой высоте или в труднодоступном месте), зачастую оказываются непреодолимыми.

Относительно недавнее появление безотражательных электронных тахеометров, которые работают без специальных отражателей, произвело «бархатную» революцию в геодезии - теперь стало можно проводить измерения без долгих и утомительных поисков лестниц для подъёма отражателя под крышу дома, всевозможных подставок для установки призмы над полом в помещении с высокими потолками и других подобных сложностей - достаточно лишь навестись на необходимую точку, ведь луч может отражаться от любой ровной поверхности.

При использовании метода традиционных тахеометрических измерений, сколько времени, например, потребуется для детальной съёмки фасада здания высотой 20 м или цеха металлургического завода площадью 2 га? Недели, месяцы? Применение безотражательного тахеометра может значительно сократить сроки, но, тем не менее, даже в данном случае специалист проведет за прибором долгие часы и дни. А с какой же плотностью он сможет выполнить съёмку фасада - одна точка на квадратный метр? Навряд ли этого будет достаточно для построения высококачественного подробного чертежа со всеми необходимыми элементами. А теперь представьте, что у вас есть безотражательный тахеометр, который ведёт съёмку автоматически, без участия оператора, со скоростью 5 тысяч измерений в секунду! Ещё совсем недавно такое предложение представлялось не менее фантастичным, чем полет на Луну сто лет назад. Сегодня это стало так же реально, как и следы американских астронавтов или русского «Лунохода» на поверхности нашего небесного соседа. Название этого чуда - лазерное сканирование . Это метод, который позволяет создавать цифровые модели всего окружающего пространства, представляя его набором (облаком) точек с пространственными координатами.

Съёмка со скоростью 5 тысяч точек в секунду была чудом, когда технология лазерного сканирования только начинала завоёвывать мир геодезических изысканий. Сейчас же современные лазерные сканеры позволяют выполнять съёмку с поистине невероятной скоростью - более миллиона точек в секунду ! Это действительно в значительной степени сокращает трудозатраты на полевой этап работ, при этом давая возможность оперативно получать сверхподробные данные результатов измерений с высокой точностью.

Где применяется лазерное сканирование?

Как многие технические новшества и технологии, недавно вышедшие из лабораторий ученых, лазерное сканирование находится только в начале пути освоения разнообразных приложений. Но уже сейчас можно перечислить несколько технологических сфер, в которых 3D лазерные сканеры применяются все более активно и уже достаточно давно стали практически незаменимыми:
- съемка промышленных объектов (заводы, нефтеперерабатывающие заводы, сложное производство);
- съемка объектов энергетики (атомные, гидро- и тепловые электростанции);
- съемка мостов;
- съемка и профилирование тоннелей;
- промышленные измерения (определение объемов резервуаров, жидких и сыпучих материалов);
- горная промышленность;
- реставрация и строительство;
- архитектура и археология.

Развитие геодезической техники привело к появлению технологии 3D лазерного сканирования. На сегодняшний день это один из самых современных и производительных методов измерений.

Наземное лазерное сканирование — бесконтактная технология измерения 3D поверхностей с использованием специальных приборов, лазерных сканеров. По отношению к традиционным оптическим и спутниковым геодезическим методам характеризуется высокой детальностью, скоростью и точностью измерений. 3D лазерное сканирование применяется в архитектуре, промышленности, строительстве дорожной инфраструктуры, геодезии и маркшейдерии, археологии.

Классификация и принцип действия 3D лазерных сканеров

3D лазерный сканер – прибор, который, производя до миллиона измерений в секунду, представляет объекты в виде набора точек с пространственными координатами. Полученный массив данных, называемый облаком точек, может быть впоследствии представлен в трехмерном и двухмерном виде, а также использован для измерений, расчетов, анализа и моделирования.

По принципу действия лазерные сканеры разделяют на импульсные (TOF), фазовые и триангуляционные. Импульсные сканеры рассчитывают расстояние как функцию времени прохождения лазерного луча до измеряемого объекта и обратно. Фазовые оперируют со сдвигом фаз лазерного излучения, в триангуляционных 3D сканерах приемник и излучатель разнесены на определенное расстояние, которое используется для решения треугольника излучатель-объект-приемник.

Основные параметры лазерного сканера – дальность, точность, скорость, угол обзора.

По дальности действия и точности измерений 3D сканеры разделяются на:

  • высокоточные (погрешность меньше миллиметра, дальность от дециметра до 2-3 метров),
  • среднего радиуса действия (погрешность до нескольких миллиметров, дальность до 100 м),
  • дальнего радиуса действия (дальность сотни метров, погрешность от миллиметров до первых сантиметров),
  • маркшейдерские (погрешность доходит до дециметров, дальность более километра).

Последние три класса по способности решать различные типы задач можно отнести к разряду геодезических 3D-сканеров. Именно геодезические сканеры используются для выполнения работ по лазерному сканированию в архитектуре и промышленности.

Скорость действия лазерных сканеров определяется типом измерений. Как правило, наиболее скоростные фазовые, на определенных режимах скорость которых достигает 1 млн измерений в секунду и более, импульсные несколько медленнее, такие приборы оперируют со скоростями в сотни тысяч точек в секунду.

Угол обзора – ещё один немаловажный параметр, определяющий количество данных, собираемых с одной точки стояния, удобство и конечную скорость работы. В настоящее время все геодезические лазерные сканеры имеют горизонтальный угол обзора в 360°, вертикальные углы варьируются от 40-60° до 300°.

Характеристики лазерного сканирования

Хотя первые сканирующие системы появились относительно недавно, технология лазерного сканирования показала свою высокую эффективность и активно вытесняет менее производительные методы измерений.

Преимущества наземного лазерного сканирования:

  • высокая детализация и точность данных;
  • непревзойденная скорость съемки (от 50 000 до 1 000 000 измерений в секунду);
  • безотражательная технология измерений, незаменимая при выполнении работ по лазерному сканированию труднодоступных объектов, а также объектов, где нахождение человека нежелательно (невозможно);
  • высокая степень автоматизации, практически исключающая влияние субъективных факторов на результат лазерного сканирования;
  • совместимость полученных данных с форматами программ по 2D и 3D проектированию ведущих мировых производителей (Autodesk , Bentley , AVEVA , Intergraph и др.);
  • изначальная «трехмерность» получаемых данных;
  • низкая доля полевого этапа в общих трудозатратах.

Применение 3D лазерного сканирования выгодно по нескольким причинам:

  • проектирование с использованием трехмерных данных геодезических изысканий не только упрощает сам процесс проектирования, но главным образом повышает качество проекта, что минимизирует последующие расходы на этапе строительства,
  • все измерения проводятся крайне быстрым и точным методом, исключающим человеческий фактор, степень достоверности информации повышается в разы, уменьшается вероятность ошибки,
  • все измерения проводятся безотражательным способом, дистанционно, что увеличивает безопасность работы; например, нет необходимости перекрывать автостраду для съемки поперечных сечений, возводить строительные леса для измерения фасада,
  • технология лазерного сканирования интегрируется с большинством САПР (Autodesk AutoCAD , Revit , Bentley Microstation), а также с «тяжелыми» средствами проектирования, такими как AVEVA PDMS , E3D , Intergraph SmartPlant , Smart3D, PDS.
  • результат изысканий получается в различных видах, от выходного формата зависит цена лазерного сканирования и сроки работ:
    • трехмерное облако точек (определенные САПР работают уже с этими данными),
    • трехмерная модель (геометрическая, интеллектуальная),
    • стандартные двумерные чертежи,
    • трехмерная поверхность (TIN, NURBS).

Процесс лазерного сканирования состоит из трех основных этапов:

  • рекогносцировка на местности,
  • полевые работы,
  • камеральные работы, обработка данных

Применение лазерного сканирования

Работы по лазерному сканированию в России на коммерческой основе выполняются с десяток лет. Несмотря на то, что технология достаточно универсальна, за это время определился круг основных применений.

Наземное лазерное сканирование в геодезии, маркшейдерии применяется для съемки топографических планов крупного масштаба, съемки ЦМР. Наибольшая эффективность достигается при лазерном сканировании карьеров, открытых выработок, шахт, штолен, тоннелей. Скорость метода позволяет оперативно получать данные о ходе земляных работ, рассчитывать объемы вынутой породы, осуществлять геодезический контроль хода строительства, следить за устойчивостью бортов карьера, мониторить оползневые процессы. Подробнее см. в статье

Технология наземного лазерного сканирования появилась сравнительно недавно, чуть более десяти лет назад, и сразу произвела революцию в области инженерных изысканий. Сегодня наземное 3D сканирование широко применяется в гражданском и промышленном строительстве, для производства исполнительной съёмки, при реконструкции и реставрации зданий, для мониторинга деформаций инженерных сооружений. Археологи используют лазерное сканирование для создания точных и детальных планов раскопов и оцифровывания исторических памятников, дизайнеры — для создания цифровых дизайн-проектов интерьеров, горные инженеры и маркшейдеры — для измерения объёмов сыпучих тел при выработке карьеров и создания точных моделей шахт. Также наземное лазерное сканирование незаменимо при ликвидации последствий чрезвычайных ситуаций и во многих других отраслях народного хозяйства. Несколько лет назад в Великобритании одними из первых в мире лазерные сканеры стали применять полицейские для точной фиксации обстановки на местах преступлений.

В чём суть метода? Принцип работы лазерного сканера крайне прост: прибор измеряет расстояние от самого себя до сканируемого объекта, выпуская пучок лазерных лучей. Лучи отражаются от измеряемой поверхности и возвращаются обратно к сканеру. Затем так называемые импульсные сканеры вычисляют расстояние до объекта (до точки, от которой отразился лазер) по времени прохождения луча туда и обратно, а наиболее точные фазовые — по разности фаз (волн) испускаемых и отражённых лучей.

При скорости света триста тысяч километров в секунду максимальная скорость работы 3D сканера ограничена лишь мощностью процессора и производительностью встроенного программного обеспечения по вычислению этих величин. Современные наземные лазерные сканеры способны производить до миллиона измерений в секунду.

В сканере есть вращающаяся призма, которая распределяет световой пучок в вертикальной плоскости, с заранее заданным шагом (например, 0,1 градуса), и сервопривод для вращения прибора по горизонтали на тот же заданный угол. Таким образом, лучи покрывают заданный сектор сканирования в двух оставшихся плоскостях, сами являясь третьей — получается трёхмерный охват. Шаг луча и сервопривода определяют так называемую «плотность сканирования», которая может составлять до нескольких десятков точек (попаданий луча) на 1 квадратный сантиметр поверхности.

Сканер «знает» свои координаты, вертикальный и горизонтальный углы, под которыми он выпустил и принял каждый луч, автоматически вычисляет расстояние, пройденное этим лучом до точки отражения от объекта, и получает таким образом трёхмерные координаты этой точки. Координаты каждой такой точки сканер сохраняет в проект. Впоследствии они будут представлены (визуализированы) в виде «облака точек» — точной копии отсканированного объекта, «нарисованной» сотнями миллионов точек. На основе облака инженеры могут построить точную векторную 3D модель, сделать сечения и детальные планы отсканированного объекта, измерить объёмы резервуаров, сыпучих тел, площадь и геометрическую форму объектов любой сложности.

Наземное лазерное сканирование: как это работает?

Предлагаем вам просмотреть короткий видеоролик, снятый производителем лазерных сканеров, компанией Leica Geosystems, о том, что такое наземное лазерное сканирование. Он размещён ниже.

Для проигрывания видео нажмите на изображение

Мы представили вам вторую серию фильма о лазерном сканировании. Те из вас, кто хочет узнать об этой технологии больше, могут посмотреть первую часть фильма , посвящённую различным областям применения 3D лазерного сканирования, и третью часть фильма , рассказывающую о простых и сложных проектах.

Точность и детализация конечных данных зависят, прежде всего, от цели, с которой проводятся инженерные изыскания. Например, для задач строительства, реконструкции зданий, а особенно — при реставрации памятников архитектуры, как правило, необходима подробная съёмка, с максимальной плотностью сканирования, чтобы по этим данным определить точную геометрическую форму и размеры мельчайших элементов лепнины. А для задач градуировки резервуаров, при вычислении объёмов сыпучих тел или обмерах добывающих карьеров подробная цифровая модель нужна редко, здесь бывает достаточно облака точек средней плотности.

При этом важно понимать, что на точность наземного лазерного сканирования, как и на конечный результат инженерных изысканий, влияет множество факторов. Среди них - расстояние, с которого выполнялись измерения, количество и качество «точек стояния» прибора (позиций, откуда вели съёмку), погодные условия — видимость должна быть хорошей, поскольку в сильный дождь или снегопад вместо фасада здания будут отсканированы капли и снежинки. Поэтому главным фактором успеха инженерных изысканий методом наземного лазерного сканирования была и остаётся квалификация инженера, который будет работать с прибором «в поле», а затем выполнять для вас постобработку данных. В команде «Союзгипрозема» работают лучшие в стране специалисты в области наземного лазерного сканирования.