Дисперсия света кратко и понятно самое важное. Дисперсия света – удивительное явление природы. Дисперсия света в природе и искусстве

В 1665–1667 гг. в Англии свирепствовала эпидемия чумы, и молодой Исаак Ньютон решил укрыться от нее в своем родном Вулсторпе. Перед отъездом в деревню он приобрел стеклянные призмы, чтобы «произвести опыты со знаменитыми явлениями цветов».

Разложение белого света с помощью призмы.

Синтез белого света с помощью призмы.

Уже в I в. н. э.было известно, что при прохождении через прозрачный монокристалл с формой шестиугольной призмы солнечный свет разлагается в цветную полоску - спектр. Еще раньше, в IV в. до н. э., древнегреческий ученый Аристотель выдвинул свою теорию цветов. Он полагал, что основным является солнечный (белый) свет, а все остальные цвета получаются из него добавлением к нему различного количества темного цвета. Таким образом, по этой теории выходило, что цвета радуги сложные, а солнечный свет простой. Несмотря на создание стеклянных призм и опыты по разложению солнечного света, проводимые с их помощью различными естествоиспытателями, в науке вплоть до XVII в. продолжало господствовать учение Аристотеля о цвете.

Исследуя природу цветов, Ньютон придумал и выполнил целый комплекс различных оптических экспериментов. Замечательно, что некоторые из них пережили столетия, и их методика без существенных изменений используется в физических лабораториях до сих пор. Рассмотрим некоторые из них.

Первый опыт был традиционным. Проделав небольшое отверстие в ставне окна затемненной комнаты, Ньютон поставил на пути пучка лучей, проходивших через это отверстие, стеклянную призму. На противоположной стене он получил изображение в виде полоски чередующихся цветов. Полученный таким образом спектр солнечного света Ньютон разделил на семь цветов радуги - красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Установление именно семи основных цветов спектра в известной степени произвольно: Ньютон стремился провести аналогию между спектром солнечного света и музыкальным звукорядом. Если же рассматривать спектр без подобного предубеждения, то полоса спектра, скорее, распадается на три главные части - красную, желто‑зеленую и сине‑фиолетовую. Остальные цвета занимают сравнительно узкие области между этими основными. Вообще же человеческий глаз может различить в спектре солнечного света до 160 различных цветовых оттенков.

В последующих опытах Ньютону удалось соединить цветные лучи в белый свет. Для этого он пропустил лучи солнечного света сквозь призму (см. рис.), а затем вышедшие из нее цветовые лучи собрал с помощью собирающей линзы. Оказалось, что в месте соединения цветовых лучей, действительно, луч стал белого цвета. По прохождению этой точки цветовые лучи снова расходятся и располагаются в порядке, обратном обычному спектру.

В результате своих исследований Ньютон, в противоположность Аристотелю, пришел к убеждению, что при смешении «белизны и черноты никакого цвета не возникает…» Все цвета спектра содержатся в самом солнечном свете, а стеклянная призма лишь разделяет их, так как различные цвета по‑разному преломляются стеклом. Таким образом, Ньютон внёс поправку к известному ранее закону преломления света: показатели преломления на самом деле постоянны для двух заданных сред при любых углах падения, но они меняются при изменении цвета падающего луча. Наиболее сильно преломляются фиолетовые лучи, слабее всего - красные. Впоследствии ученые установили тот факт, что, рассматривая свет как волну, каждому цвету следует сопоставлять свою длину волны. Очень важно, что эти длины волн меняются непрерывным образом, соответствуя различным оттенкам каждого цвета.

Изменение показателя преломления среды в зависимости от длины распространяющейся в ней волны и называется дисперсией (от латинского глагола «рассеивать»). Для обычного стекла показатель преломления близок к 1,5 для всех длин волн видимого света. При этом его дисперсия такова, что при переходе от красного (λ ≃ 0,65 мкм) к фиолетовому (λ ≃ 0,44 мкм) цвету коэффициент преломления увеличивается от 1,514 до 1,534, т. е, всего на 1,3%.

Тем не менее этот один процент позволил ученым с помощью специальных приборов - спектрографов - получать важнейшую информацию о составе и свойствах различных веществ, изучая их спектры излучения и поглощения.

Опыты Ньютона и других ученых показывали, что с увеличением длины волны света показатель преломления исследуемых веществ монотонно уменьшается. Однако в 1860 г., измеряя показатель преломления паров иода, французский физик Леру обнаружил, что красные лучи преломляются этим веществом сильнее, чем синие. Это явление он назвал аномальной дисперсией света; в дальнейшем оно было обнаружено и во многих других веществах. В современной физике как нормальная, так и аномальная дисперсия света объясняются единым образом. Отличие этих двух явлений друг от друга заключается в том, что нормальная дисперсия происходит с лучами света, длина волны которых далека от области поглощения излучения данным веществом, а аномальная дисперсия наблюдается именно в области поглощения.

  • 3.Свободные колебания в lc-контуре. Свободные затухающие колебания. Дифференциальное уравнение затухающих колебаний и его решение.
  • 4. Вынужденные электрические колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
  • 5. Резонанс напряжений и резонанс токов.
  • Основы теории максвелла для электромагнитного поля.
  • 6.Общая характеристика теории Максвелла. Вихревое магнитное поле. Ток смещения.
  • 7.Уравнения Максвелла в интегральном виде.
  • Электромагнитные волны
  • 8.Экспериментальное получение электромагнитных волн. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля. Энергия электромагнитных волн. Давление электромагнитных волн.
  • Геометрическая оптика
  • 9. Основные законы геометрической оптики. Фотометрические величины и их единицы.
  • 10. Преломление света на сферических поверхностях. Тонкие линзы. Формула тонкой линзы и построение изображений предметов с помощью тонкой линзы.
  • 11.Световые волны
  • 12.Интерференция света при отражении от тонких пластинок. Полосы равной толщины и равного наклона.
  • 13. Кольца Ньютона. Применение явления интерференции. Интерферометры. Просветление оптики.
  • 14.Дифракция света
  • 15. Дифракция света на круглом экране и круглом отверстии.
  • 16.Дифракция света на одной щели. Дифракционная решетка.
  • 17. 18. Взаимодействие света с веществом. Дисперсия и поглощение света. Нормальная и аномальная дисперсия. Закон Бугера-Ламберта.
  • 19.Поляризация света. Естественный и поляризованный свет. Степень поляризации. Закон малюса.
  • 20.Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
  • 21. Эффект доплера для световых волн.
  • 22.Тепловое излучение. Свойства равновесного теплового излучения. Абсолютно черное тело. Распределение энергии в спектре абсолютно черного тела. Законы Кирхгофа, Стефана- Больцмана, Вина.
  • 23. Элементы специальной теории относительности Постулаты специальной теории относительности. Преобразования Лоренца.
  • 2. Длительность событий в разных системах отсчета.
  • 24. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
  • 17. 18. Взаимодействие света с веществом. Дисперсия и поглощение света. Нормальная и аномальная дисперсия. Закон Бугера-Ламберта.

    Дисперсией света называют явление зависимости абсолютного показателя преломления вещества n от частоты света ω (или длины волны λ):

    Следствием дисперсии света является разложение в спектр пучка белого света при прохождении его через призму. Первое экспериментальное исследование дисперсии света в стеклянной призме было выполнено И. Ньютоном в 1672 г.

    Дисперсия света называется нормальной в случае, если показатель преломления монотонно возрастает с увеличением частоты (убывает с увеличением длины волны); в противном случае дисперсия называется аномальной , рис.1.

    Величина

    называется дисперсией вещества и характеризует скорость изменения показателя преломления при изменении длины волны.

    Нормальная дисперсия света наблюдается вдали от полос или линий поглощения света веществом, аномальная – в пределах полос или линий поглощения.

    Рассмотрим дисперсию света в призме, рис.2.

    Пусть монохроматический пучок света падает на прозрачную призму с преломляющим углом θ и показателем преломления n под углом α 1 . После двукратного отклонения (на левой и правой гранях призмы) луч оказывается отклоненным от первоначального направления на угол φ. Из геометрических преобразований следует, что

    т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол и показатель преломления вещества призмы. Поскольку n = f(λ), то лучи разных длин волн после прохождения призмы окажутся отклоненными на разные углы, т.е. пучок белого света, падающий на призму, за призмой разлагается в спектр, что и наблюдалось впервые Ньютоном. Значит, с помощью призмы, так же как и с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

    Следует помнить, что составные цвета в дифракционном и призматическом спектрах располагаются различно. В дифракционном спектре синус угла отклонения пропорционален длине волны, следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. В призме же для всех прозрачных веществ с нормальной дисперсией показатель преломления n с увеличением длины волны уменьшается, поэтому красные лучи отклоняются призмой слабее, чем фиолетовые.

    На явлении нормальной дисперсии основано действие призменных спектрометров , широко используемых в спектральном анализе. Это объясняется тем, что изготовить призму значительно проще, чем дифракционную решетку. Призменные спектрометры имеют также большую светосилу.

    Электронная теория дисперсии света. Из макроскопической электромагнитной теории Максвелла следует, что

    но в оптической области спектра для всех веществ μ ≈ 1, поэтому

    n = ε. (1)

    Формула (1) противоречит опыту, т.к. величина n, являясь переменной n = f(λ), равняется в то же время определенной постоянной ε (постоянной в теории Максвелла). Кроме того, полученные из этого выражения значения n не согласуются с экспериментальными данными.

    Для объяснения дисперсии света была предложена электронная теория Лоренца, в которой дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны.

    Ознакомимся с этой теорией на примере однородного изотропного диэлектрика, предположив формально, что дисперсия света является следствием зависимости ε от частоты ω световых волн. Диэлектрическая проницаемость вещества равна

    ε = 1 + χ = 1 + Р/(ε 0 Е),

    где χ – диэлектрическая восприимчивость среды, ε 0 – электрическая постоянная, Р – мгновенное значение поляризованности (наведенный дипольный момент единицы объема диэлектрика в поле волны напряженностью Е). Тогда

    n 2 = 1 + Р/(ε 0 Е), (2)

    т.е. зависит от Р. Для видимого света частота ω~10 15 Гц столь велика, что существенны лишь вынужденные колебания внешних (наиболее слабо связанных) электронов атомов, молекул или ионов под действием электрической составляющей поля волны, а ориентационной поляризации молекул при такой частоте не будет. Эти электроны наз. оптическими электронами.

    Для простоты рассмотрим колебания одного оптического электрона в молекуле. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р = ех, где е – заряд электрона, х – смещение электрона из положения равновесия под действием электрического поля световой волны. Пусть n 0 – концентрация атомов в диэлектрике, тогда

    Р = р n 0 = n 0 е х. (3)

    Подставив (3) в (2) получим

    n 2 = 1 + n 0 е х /(ε 0 Е), (4)

    т.е. задача сводится к определению смещения х электрона под действием внешнего электрического поля Е = Е 0 cos ωt.

    Уравнение вынужденных колебаний электрона для простейшего случая

    d 2 x/dt 2 +ω 0 2 x = (F 0 /m)cos ωt = (e/ m) E 0 cos ωt, (5)

    где F 0 = еE 0 –амплитудное значение силы, действующей на электрон со стороны поля волны, ω 0 = √k/m – собственная частота колебаний электрона, m – масса электрона. Решив уравнение (5), найдем ε = n 2 в зависимости от констант атома (е, m, ω 0) и частоты внешнего поля ω, т.е. решим задачу дисперсии.

    Решением (5) является

    Х = А cos ωt, (6)

    А = еЕ 0 /m(ω 0 2 – ω 2). (7)

    Подставим (6) и (7) в (4) и получим

    n 2 = 1 + n 0 e 2 /ε 0 m(ω 0 2 – ω 2). (8)

    Из (8) видно, что показатель преломления вещества зависит от частоты ω внешнего поля, и что в области частот от ω = 0 до ω = ω 0 значение n 2 больше 1 и возрастает с увеличением частоты ω (нормальная дисперсия ). При ω = ω 0 значение n 2 = ± ∞; в области частот от ω = ω 0 до ω = ∞ значение n 2 меньше 1 и возрастает от - ∞ до 1 (нормальная дисперсия). Перейдя от n 2 к n, получим график зависимости n = n(ω), рис.1. Область АВ – область аномальная дисперсии . Изучение аномальной дисперсии – Д.С. Рождественский.

    Поглощением света – называется уменьшение энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии.

    С точки зрения электронной теории, взаимодействие света и вещества сводится к взаимодействию электромагнитного поля световой волны с атомами и молекулами вещества. Электроны, входящие в состав атомов, могут колебаться под действием переменного электрического поля световой волны. Часть энергии световой волны затрачивается на возбуждение колебаний электронов. Частично энергия колебаний электронов вновь переходит в энергию светового излучения, а также переходит в другие формы энергии, например, в энергию теплового излучения.

    Поглощение светового излучения можно в общих чертах описать с энергетической точки зрения, не входя в детали механизма взаимодействия световых волн с атомами и молекулами поглощающего вещества.

    Формальное описание поглощения света веществом было дано Бугером, который установил связь между интенсивностью света, прошедшего через конечный слой поглощающего вещества, и интенсивностью падающего на него света

    I = I e -K l (1)

    где I 0 λ – интенсивность светового излучения с длиной волны λ, падающего на поглощающий слой; I - интенсивность светового излучения, прошедшего поглощающий слой вещества толщиной l ; К λ – коэффициент поглощения, зависящий от λ, т.е. К λ = f(λ).

    Если поглотителем является вещество в растворе, то поглощение света тем больше, чем больше молекул растворенного вещества свет встречает на своем пути. Поэтому коэффициент поглощения зависит от концентрации С. В случае слабых растворов, когда взаимодействием молекул растворенного вещества можно пренебречь, коэффициент поглощения пропорционален С:

    К λ = c λ С (2)

    где c λ – коэффициент пропорциональности, который также зависит от λ. Учитывая (2), можно закон Бугера (1) переписать в виде:

    I λ = I 0λ e - c C l (3)

    c λ – показатель поглощения света на единицу концентрации вещества. Если концентрация растворенного вещества выражается в [моль/литр], то c λ называют молярным коэффициентом поглощения .

    Соотношение (3) носит название закона Бугера-Ламберта-Бера. Отношение величины светового потока, вышедшего из слоя I , к во­шедшему I 0λ носит название коэффициента оптического (или свето-) пропускания слоя Т :

    Т = I /I 0 λ = e - c C l (4)

    или в процентах

    Т = I /I 0λ 100%. (5)

    Поглощение слоя равно отношению

    Л
    огарифм величины 1/Т называетсяоптической плотностью слоя D

    D = lg 1/T = lg I 0 λ /I l λ = 0,43c λ Сl (6)

    т.е. оптическая плотность характеризует поглоще­ние света средой. Соотношение (6) может быть использовано как для определения концен- трации растворов, так и для характеристики спек­тров поглощения веществ.

    Зависимость оптической плотности от длины волны D = f(λ) является спектральной характеристикой поглощения данного вещества, а кривая, выражающая эту зависимость, называется спектром поглощения. Спектры поглощения, как и спектры испускания, бывают линейчатые, полосатые и сплошные, рис. 3. Cогласно модели атома Бора кванты света испускаются и поглощаются при переходе системы (атома) из одного энергетического состояния в другое. Если при этом в оптических переходах меняется только электронная энергия системы, как это имеет место в атомах, то в спектре линия поглощения будет резкой.

    Рис.3.а)линейчатый спектр поглощения, б)полосатый спектр поглощения, в) сплошной спектр поглощения.

    Однако для сложных молекул, энергия которых слагается из электронной Е эл, колебательной Е кол и вращательной Е вр энергии (Е =Е эл + Е кол + Е вр) при поглощении света изменяется не только электронная энергия, но обязательно колебательная и вращательная. Причем поскольку ∆Е эл >>∆E кол >>∆Е вр, то в результате этого набор линий, соответствующих электронному переходу, в спектре поглощения растворов выглядит как полоса поглощения.

    Коэффициент поглощения для диэлектриков невелик (примерно 10 -3 – 10 -5 см -1), для них наблюдаются широкие полосы поглощения, т.е. диэлектрики имеют сплошной спектр поглощения . Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлением резонанса вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика.

    Коэффициент поглощения для металлов имеет большие значения (примерно 10 3 - 10 5 см -1) и поэтому металлы являются непрозрачными для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощается свет. На рис. 1 показана типичная зависимость коэффициента поглощения света от частоты в области полосы поглощения. Видно, что внутри полосы поглощения наблюдается аномальная дисперсия. Однако поглощение света веществом должно быть значительным, чтобы повлиять на ход показателя преломления.

    Зависимостью коэффициента поглощения от длины волны (частоты) объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения этих длин волн стекло будет казаться черным. Это явление используется при изготовлении светофильтров , которые в зависимости от хим. состава стекол пропускают свет только определенных длин волн, поглощая остальные.

    Каждый охотник желает знать, где сидит фазан. Как мы помним, эта фраза означает последовательность цветов спектра: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Кто показал, что белый цвет это совокупность всех цветов, какое отношение имеет к этому радуга, красивые закаты и восходы солнца, блеск драгоценных камней? На все эти вопросы отвечает наш урок, тема которого: «Дисперсия света».

    До второй половины XVII века не было полной ясности, что же такое цвет. Некоторые ученые говорили, что это свойство самого тела, некоторые заявляли, что это различные сочетания светлого и темного, тем самым путая понятия цвета и освещенности. Такой цветовой хаос царил до того времени, пока Исаак Ньютон не провел опыт по пропусканию света сквозь призму (рис. 1).

    Рис. 1. Ход лучей в призме ()

    Вспомним, что луч, проходящий через призму, терпит преломление при переходе из воздуха в стекло и потом еще одно преломление - из стекла в воздух. Траектория луча описывается законом преломления, а степень отклонения характеризуется показателем преломления. Формулы, описывающие эти явления:

    Рис. 2. Опыт Ньютона ()

    В темной комнате сквозь ставни проникает узкий пучок солнечного света, на его пути Ньютон разместил стеклянную трехгранную призму. Пучок света, проходя через призму, преломлялся в ней, и на экране, стоявшем за призмой, появлялась разноцветная полоса, которую Ньютон назвал спектром (от латинского «spectrum» - «видение»). Белый цвет превратился сразу во все цвета (рис. 2). Какие же выводы сделал Ньютон?

    1. Свет имеет сложную структуру (говоря современным языком - белый свет содержит электромагнитные волны разных частот).

    2. Свет различного цвета отличается степенью преломляемости (характеризуется разными показателями преломления в данной среде).

    3. Скорость света зависит от среды.

    Эти выводы Ньютон изложил в своем знаменитом трактате «Оптика». Какова же причина такого разложения света в спектр?

    Как показывал опыт Ньютона, слабее всего преломлялся красный цвет, а сильнее всего - фиолетовый. Вспомним, что степень преломления световых лучей характеризует показатель преломления n. Красный цвет от фиолетового отличается частотой, у красного частота меньше, чем у фиолетового. Раз показатель преломления становится все больше при переходе от красного конца спектра к фиолетовому, можно сделать вывод: показатель преломления стекла увеличивается с возрастанием частоты света. В этом и состоит суть явления дисперсии.

    Вспомним, как показатель преломления связан со скоростью света:

    n ~ ν; V ~ => ν =

    n - показатель преломления

    С - скорость света в вакууме

    V - скорость света в среде

    ν - частота света

    Значит, чем больше частота света, тем с меньшей скоростью свет распространяется в стекле, таким образом, наибольшую скорость внутри стеклянной призмы имеет красный цвет, а наименьшую скорость - фиолетовый.

    Различие скоростей света для разных цветов осуществляется только при наличии среды, естественно, в вакууме любой луч света любого цвета распространяется с одной и той же скоростью м/с. Таким образом мы выяснили, что причиной разложения белого цвета в спектр является явление дисперсии.

    Дисперсия - зависимость скорости распространения света в среде от его частоты.

    Открытое и исследованное Ньютоном явление дисперсии ждало своего объяснения более 200 лет, лишь в XIX веке голландским ученым Лоренсом была предложена классическая теория дисперсии.

    Причина этого явления - во взаимодействии внешнего электромагнитного излучения, то есть света со средой: чем больше частота этого излучения, тем сильнее взаимодействие, а значит, тем сильнее будет отклоняться луч.

    Дисперсия, о которой мы говорили, называется нормальной, то есть показатель частоты растет, если частота электромагнитного излучения растет.

    В некоторых редко встречающихся средах возможна аномальная дисперсия, то есть показатель преломления среды растет, если частота падает.

    Мы увидели, что каждому цвету соответствует определенная длина волны и частота. Волна, соответствующая одному и тому же цвету, в разных средах имеет одну и ту же частоту, но разные длины волн. Чаще всего, говоря о длине волны, соответствующей определенному цвету, имеют в виду длину волны в вакууме или воздухе. Свет, соответствующий каждому цвету, является монохроматическим. «Моно» - один, «хромос» - цвет.

    Рис. 3. Расположение цветов в спектре по длинам волн в воздухе ()

    Самый длинноволновый - это красный цвет (длина волны - от 620 до 760 нм), самый коротковолновый - фиолетовый (от 380 до 450 нм) и соответствующие частоты (рис. 3). Как видите, белого цвета в таблице нет, белый цвет - это совокупность всех цветов, этому цвету не соответствует какая-то строго определенная длина волны.

    Чем же объясняются цвета тел, которые нас окружают? Объясняются они способностью тела отражать, то есть рассеивать падающее на него излучение. Например, на какое-то тело падает белый цвет, который является совокупностью всех цветов, но это тело лучше всего отражает красный цвет, а остальные цвета поглощает, то оно нам будет казаться именно красного цвета. Тело, которое лучше всего отражает синий цвет, будет казаться синего цвета и так далее. Если же тело отражает все цвета, оно в итоге будет казаться белым.

    Именно дисперсией света, то есть зависимостью показателя преломления от частоты волны, объясняется прекрасное явление природы - радуга (рис. 4).

    Рис. 4. Явление радуги ()

    Радуга возникает из-за того, что солнечный свет преломляется и отражается капельками воды, дождя или тумана, парящими в атмосфере. Эти капельки по-разному отклоняют свет разных цветов, в результате белый цвет разлагается в спектр, то есть происходит дисперсия, наблюдатель, который стоит спиной к источнику света, видит разноцветное свечение, которое исходит из пространства по концентрическим дугам.

    Также дисперсией объясняется и замечательная игра цвета на гранях драгоценных камней.

    1. Явление дисперсии - это разложение света в спектр, обусловленное зависимостью показателя преломления от частоты электромагнитного излучения, то есть частоты света. 2. Цвет тела определяется способностью тела отражать или рассеивать ту или иную частоту электромагнитного излучения.

    Список литературы

    1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
    2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
    3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.

    Домашнее задание

    1. Какие выводы сделал Ньютон после опыта с призмой?
    2. Дать определение дисперсии.
    3. Чем определяется цвет тела?
    1. Интернет-портал B -i-o-n.ru ().
    2. Интернет-портал Sfiz.ru ().
    3. Интернет-портал Femto.com.ua ().

    Дисперсия света представляет собой явление разложения луча белого света на цветные лучи. Это происходит при прохождении света через трёхгранную призму.

    Явление дисперсии света было открыто в 1672 году известным учёным Ньютоном, который путём серии экспериментов доказал прямую зависимость между цветом световой волны и её частотой. Самым наглядным природным подтверждением проделанного учёным опыта является появление радуги после дождя. В этом случае белый свет преломляется через множество капель, образуя целый спектр света, от красного к фиолетовому цвету. Во многом именно благодаря открытию явления дисперсии света удалось доказать волновую природу света.

    Изучение явления

    Видимый белый свет включает монохроматические волны, обладающие разной длиной. Совокупность таких волн называют световым спектром, а прибор, при помощи которого изучают дисперсию света, именуется спектральным. Так, простейшим спектральным прибором, при помощи которого можно произвести разложение света в спектр, является стеклянная призма. Математически явление дисперсии света определяется как зависимость преломления того или иного вещества от длины световой волны.

    Дифракционная решетка

    Для более детального изучения явления дисперсии света были изобретены дифракционные решётки. Эти приборы состоят из большого количества щелей и выступов, которые в периодической последовательности наносятся на специальные (стеклянные или металлические) поверхности. Благодаря применению высоких технологий, удалось создать такие дифракционные решётки, которые на каждом миллиметре своей структуры содержат около 2000 штрихов. Существуют также более грубые дифракционные решётки, содержащие всего лишь 100 штрихов на 1 миллиметр. Однако следует отметить, что функцию этого прибора могут выполнять такие обыденные предметы, как граммофонная пластинка или компакт-диск.

    Радуга

    В том случае, если свет внутри дождевой капли преломляется только один раз, появляется так называемая первичная радуга. Однако при двух отражениях на небе появляется двойная радуга, которая представляет собой более редкое природное явление. Та радуга, диаметр которой меньше, более яркая и обладает стандартным порядком цветов. Вторая радуга, напротив, менее заметна и обладает обратным порядком цветов спектра. Таким образом, необычно красивое явление радуги после дождя можно объяснить простыми физическими законами.

    Дисперсия света

    Разложение света в спектр вследствие дисперсии при прохождении через призму (опыт Ньютона).

    Диспе́рсия све́та (разложение света) - это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года , хотя теоретически достаточно хорошо объяснена значительно позднее.

    • Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора . Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

    Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней:

    • у красного цвета максимальная скорость в среде и минимальная степень преломления,
    • у фиолетового цвета минимальная скорость света в среде и максимальная степень преломления.

    Однако в некоторых веществах (например в парах йода) наблюдается эффект аномальной дисперсии , при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров йода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

    Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

    • Белый свет разлагается на спектр и в результате прохождения через дифракционную решётку или отражения от нее (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр - равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

    По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии , применяемый как название количественного соотношения, связывающего частоту и волновое число , применяется не только к электромагнитной волне , но к любому волновому процессу.

    Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

    Дисперсия является причиной хроматических аберраций - одних из аберраций оптических систем , в том числе фотографических и видео-объективов .

    Коши пришел к формуле, выражающей зависимость показателя преломления среды от длины волны:

    …,

    Дисперсия света в природе и искусстве

    Из-за дисперсии можно наблюдать разные цвета.

    • Радуга , чьи цвета обусловлены дисперсией, - один из ключевых образов культуры и искусства.
    • Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах.
    • В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться, подчеркиваться.
    • Разложение света в спектр (вследствие дисперсии) при преломлении в призме - довольно распространенная тема в изобразительном искусстве. Например, на обложке альбома Dark Side Of The Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.

    См. также

    Литература

    • Яштолд-Говорко В. А. Фотосъёмка и обработка. Съёмка, формулы, термины, рецепты. - Изд. 4-е, сокр. - М .: Искусство, 1977.

    Ссылки


    Wikimedia Foundation . 2010 .

    • Главный фокус
    • Дисперсия

    Смотреть что такое "Дисперсия света" в других словарях:

      ДИСПЕРСИЯ СВЕТА - зависимость преломления показателя n в ва от частоты n (длины волны l) света или зависимость фазовой скорости световых волн от их частоты. Следствие Д. с. разложение в спектр пучка белого света при прохождении его сквозь призму (см. СПЕКТРЫ… … Физическая энциклопедия

      дисперсия света - Явления, обусловленные зависимостью скорости распространения света от частоты световых колебаний. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики… … Справочник технического переводчика

      дисперсия света - šviesos skaida statusas T sritis radioelektronika atitikmenys: angl. dispersion of light vok. Lichtdispersion, f; Zerteilung des Lichtes, f rus. дисперсия света, f pranc. dispersion de la lumière, f … Radioelektronikos terminų žodynas

      дисперсия света - šviesos dispersija statusas T sritis fizika atitikmenys: angl. dispersion of light vok. Lichtdispersion, f; Zerlegung des Lichtes, f rus. дисперсия света, f pranc. dispersion de la lumière, f … Fizikos terminų žodynas

      Дисперсия света - зависимость показателя преломления n вещества от частоты ν (длины волны λ) света или зависимость фазовой скорости (См. Фазовая скорость) световых волн от частоты. Следствие Д. с. разложение в спектр пучка белого света при прохождении… … Большая советская энциклопедия

      ДИСПЕРСИЯ СВЕТА - зависимость показателя преломления п в ва от частоты света v. В обл. частот света, для к рых в во прозрачно, п возрастает с увеличением v нормальная Д. с. В обл. частот, соответствующих полосам интенсивного поглощения света в вом, п убывает с… … Большой энциклопедический политехнический словарь

      Дисперсия света - зависимость абсолютного показателя преломления вещества от длины волны света … Астрономический словарь

      Аномальная дисперсия света - Для улучшения этой статьи желательно?: Добавить иллюстрации. Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Проставить шаблон карточку, который существ … Википедия

      ДИСПЕРСИЯ ВОЛН - зависимость фазовой скорости гармонических волн в среде от частоты их колебаний. дисперсия волн наблюдается для волн любой природы. Наличие дисперсии волн приводит к искажению формы сигнала (напр., звукового импульса) при распространении в среде … Большой Энциклопедический словарь